If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-60=0
a = 2; b = -8; c = -60;
Δ = b2-4ac
Δ = -82-4·2·(-60)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{34}}{2*2}=\frac{8-4\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{34}}{2*2}=\frac{8+4\sqrt{34}}{4} $
| (5x+1)=49 | | 2s+19=6s-17 | | 6-w=175 | | 4s-94=2s-40 | | 4.7(x-3)=-0.3+20.9 | | 7=8/v-4 | | 7x-56=5x-36 | | -(d+-83)+-14=-10 | | 184-y=263 | | 3(4x+8)=4 | | (15x-4)=62+(7x+14) | | (w+5/w-1)+1=w+2/w+1 | | 6x-1=-2x+9 | | 4(x+5)+x=8(x+2)+1 | | 4t-16=2t+12 | | z+24=7z-48 | | 5(x+4)+2=3x-2 | | x+12+2×-29+x+5=180 | | y+36=4y | | -2(x+6)=4(x+3) | | 15a-12=16a+8 | | 29a^2+31a+4=8a^2 | | 3-4a=6+5a | | x+78+x=180 | | 37b=32b+5 | | (X-6)(x^2-7x+12)=0 | | 4c+33=34c+3 | | 0.45x=0.475 | | a^2+31/21a+4/21=0 | | v-2.67=8.79 | | 3(1-x)+2x=3(x-7 | | x-9.68=2.8 |